Example Systems, Signals

Analog and Digital Communications
Autumn 2005-2006

Example: PSTN

- Public Switched Telephone Network
- Components
 - Phone set (analog signal is generated)
 - Local exchange (A/D conversion)
 - Long-haul exchange
- Characteristics
 - Circuit-switched network
 - Designed for voice communications (analog???)
 - Faxes and modems use PSTN for transmission of digital data in analog form
Example: PSTN

Local exchange

Long distance line

International exchange

International line

Local exchange

Long distance line

Long distance line

Local exchange

Example: Cellular

Edamabad

MTSO

PSTN

MTSO

MTSO: Mobile Telephone Switching Office

MTSO

Lahore

Sep 08, 2005 CS477: Analog and Digital Communications
Example: Cellular

- Cellular Communication System
 - A cell is assigned some number of channels
 - Typically one channel is allocated to a user
 - Users communicate with a base station
 - Base station is connected to MTSO/PSTN
 - AMPS is an analog system
 - Uses FM and frequency-division multiple access
 - Digital systems use digital modulation

Example: Radio broadcast

- Two modes are used
 - AM
 - Amplitude modulation
 - 535-1605kHz
 - 10kHz channels
 - FM
 - Frequency modulation
 - 88-108MHz
 - Channels centered at 200kHz intervals starting at 88.1MHz
Example: Wireless LANs

- Various standards
- IEEE 802.11a/b/g popular
- IEEE 802.11b
 - 11Mb/s data rate
 - 2.4-2.4835GHz band
 - Modulation: Direct sequence spread spectrum (DSSS)
- IEEE 802.11a
 - 55Mb/s data rate
 - 5.725-5.825GHz band (in U.S.)
 - Uses orthogonal frequency division multiplexing (OFDM)

Example: LANs and WANs

- Local Area Networks (LANs)
 - Connect “closely” located computers
 - Data bits are transmitted in chunks (packets) for efficiency/feasibility reasons
 - Various LAN protocols are used in practice
- Wide Area Networks (WANs)
 - A wide area backbone network connects different LANs
 - A standard protocol is needed for such communication (TCP/IP)
Example: Ad Hoc Networks

- Various devices connected to each other without using an infrastructure
 - Sensor Networks
 - Similar to ad hoc Networks (may be considered a special case of ad hoc networks)
 - Have power constraints (Use non-rechargeable battery)
 - Mesh Networks
 - Another example of ad hoc networks
 - Used for provide communications to remote areas

A Generic Communication System

```
<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Channel</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(t)</td>
<td>s(t)</td>
<td>n(t)</td>
</tr>
<tr>
<td>(Modulator)</td>
<td>h(t)</td>
<td>Demodulator</td>
</tr>
<tr>
<td>Analog or Digital</td>
<td></td>
<td>m̂(t)</td>
</tr>
</tbody>
</table>
```

Sep 08, 2005 CS477: Analog and Digital Communications
Elements of Communication Systems

- **Transmitter**
 - Modulation
 - Coding
- **Channel**
 - Attenuation
 - Noise
 - Distortion
 - Interference
- **Receiver**
 - Detection (Demodulation+Decoding)
 - Filtering (Equalization)

Transmitter

- **What does modulation do?**
 - Encodes messages (analog) or bits (digital) into amplitude, frequency, or phase of a carrier signal
 - Also makes transmitted signal robust against channel impairments
- **Coding**
 - Source coding - remove redundancy
 - Channel coding - add redundancy
Channel

- Channel introduces impairments
 - Noise
 - Thermal noise is the most significant
 - Additive white Gaussian noise (AWGN)
 - Distortion
 - Inter-symbol interference
 - Attenuation and fading
 - Constant attenuation
 - Variable attenuation
 - Interference
 - Crosstalk

Receiver

- What does demodulator do?
 - Extracts messages or bits from the received signal
 - Mitigates channel impairments by making use of equalizers
 - Decodes the signal, especially if channel coding was performed at the transmitter
Performance Criterion

- How a “good” communication system can be differentiated from a “sloppy” one?

 - For analog communications
 - How close is $\hat{m}(t)$ to $m(t)$? Fidelity!
 - SNR is typically used as a performance metric

 - For digital communications
 - Data rate and probability of error
 - No channel impairments, no error
 - With noise, error probability depends upon data rate, signal and noise powers, modulation scheme

Review of Signals and Spectra

- A generic sinusoidal signal
 \[v(t) = A \cos(w_0 t + \phi); \quad w_0 = 2\pi f_0 \]

- Phasor representation
 \[v(t) = A \cos(w_0 t + \phi) = \Re[A e^{j(w_0 t + \phi)}] \]

- Frequency domain representation
 - Rotating phasors
 - Frequency plots
 - Amplitude
 - Phase