Optimizations for memory hierarchies

- Carr, McKinley, Tseng
 loop transformations to improve cache performance

- Callahan, Carr, Kennedy
 transformation to improve register allocation
 (scalar replacement)
Memory Hierarchy — sample architecture

- **Regs**: 32 registers
 - × 8 bytes/register
- **Cache**: 512 lines
 - × 128 bytes/line
- **TLB**: 128 pages entries
 - × 72 bytes/page
- **RAM**: 8192 pages
 - × 4096 bytes/page
- **Disk**: 131072 tracks
 - × 8192 bytes/track
Data Locality

Why locality?

- memory accesses are expensive
- exploit higher levels of memory hierarchy by reusing registers, cache lines, TLB, etc.
- locality of reference ⇔ reuse

Locality

- temporal locality \textit{reuse of a specific location}
- spatial locality \textit{reuse of adjacent locations}
 \textit{(cache lines, TLB entries, pages)}

Reuse

- self-reuse \textit{caused by same reference}
- group-reuse \textit{caused by multiple references}

What locality/reuse occurs in this loop nest?

\begin{verbatim}
 do i = 1, N
 do j = 1, N
 A(i) = A(i) + B(j) + B(j+2)
 \end{verbatim}

Loop Transformations

What?

- modify execution order of loop iterations
- preserve data dependence constraints

Why?

- data locality – increase reuse of registers, cache
- parallelism – eliminate loop-carried deps, incr. granularity

Taxonomy

- Loop Interchange*
- Loop Fusion*
- Loop Distribution*
- Strip Mine and Interchange (a.k.a. Tiling & Blocking)
- Unroll-and-Jam (a variety of Tiling)
- Loop Reversal*

*: used in compound algorithm
Review — Which Loops are Parallel?

\[
\begin{align*}
S_1 & \quad A(I,J) = A(I,J-1) + 1 \\
S_2 & \quad A(I,J) = A(I-1,J-1) + 1 \\
S_3 & \quad B(I,J) = B(I-1,J+1) + 1
\end{align*}
\]

- A dependence \(D = (d_1, \ldots, d_k) \) is \textit{carried at level} \(i \), if \(d_i \) is the first nonzero element of the distance/direction vector.

- A loop \(l_i \) is \textit{parallel}, if \(\not\exists \) a dependence \(D \) carried at level \(i \). Either
Loop Interchange

do I = 1, N
 do J = 1, N
 \(S_1 \) \(A(I,J) = A(I-1,J) + 1 \)
 enddo
 enddo

\(S_2 \) \(B(I,J) = B(I-1,J+1) + 1 \)
 enddo
 enddo

Loop interchange is safe iff

- it does not reverse the execution order of the source and sink of any dependence in the nest.

⇒ Benefits
 - Enable parallelization of outer or inner loops
 - Changes execution order of the statements
 - May improve reuse
Loop Fusion

\[\begin{align*}
\text{do } i &= 2, n \\
\text{\hspace{1cm}} s_1 &\ a(i) = b(i) \\
\text{\hspace{1cm}} s_2 &\ c(i) = b(i) \ast a(i-1)
\end{align*} \]

\[\text{\hspace{1cm}} \text{do } i &= 2, n \\
\text{\hspace{2cm}} s_1 &\ a(i) = b(i) \\
\text{\hspace{2cm}} s_2 &\ c(i) = b(i) \ast a(i-1)
\]

\[\implies \text{loop fusion} \implies \]

\[\iff \text{loop distribution} \iff \]

Loop Fusion is safe \textit{iff}

\begin{itemize}
 \item no forward dependence between nests becomes a backward loop carried dependence.
\end{itemize}

\[\implies \text{Would fusion be safe if } s_2 \text{ referenced } a(i + 1) \ ? \]

\begin{itemize}
 \item Benefits
 \begin{itemize}
 \item May improve reuse
 \item Eliminates synchronization between parallel loops
 \item Reduced loop overhead
 \end{itemize}
\end{itemize}
Loop Distribution (loop fission)

\[\Rightarrow \text{loop distribution} \Rightarrow \]
\[
\text{do } i = 2, n \\
\quad s_1 \quad a(i) = b(i) \\
\quad s_2 \quad c(i) = b(i) \ast a(i+1)
\]
\[
\text{do } i = 2, n \\
\quad s_2 \quad c(i) = b(i) \ast a(i+1)
\]
\[
\text{do } i = 2, n \\
\quad s_1 \quad a(i) = b(i)
\]

Loop Distribution is safe iff

- statements involved in a cycle of dependences (recurrence) remain in the same loop, &
- if \(\exists \) a dependence between two statements placed in different loops, it must be forward.

\[\Rightarrow \text{Benefits} \]
- Partial parallelization
- Enables other transformations (e.g. loop interchange)
Strip Mine and Interchange

⇒ Strip Mine ⇒

do I = 1, n
 do J = 1, n
 A(J,I) = B(J) * C(I)

do II = 1, n, tile
 do I = II, II + tile -1
 do J = 1, n
 A(J,I) = B(J) * C(I)

⇒ Interchange ⇒

do II = 1, n, tile
 do J = 1, n
 do I = II, II + tile -1
 A(J,I) = B(J) * C(I)

Strip Mining is always safe. With interchange it

• enables loop invariant reuse
• by changing the shape of the iteration space
Using Loop Transformations Systematically to Improve Reuse

Motivation: Enable portable programming without sacrificing performance

- optimization framework
- cache model
- compound loop transformation algorithm
 - permutation
 - fusion
 - distribution
 - reversal
- results
 - transformation (*compound algorithm*)
 - simulation
 - performance

Optimization Framework

Data locality optimizations should proceed in the following order:

1. improve order of memory accesses to exploit all levels of the memory hierarchy via loop transformations

 \[\implies \text{cache line size} \]

2. Tile to fit in cache, second level cache, TLB

 \[\implies \text{size of cache(s), replacement policy, associativity} \]

3. register tiling via unroll-and-jam and scalar replacement

 \[\implies \text{number and type of registers} \]

Step 1: Assumptions (mostly machine independent)

- \text{cls} - the cache line size in terms of data items
- Fortran column-major order
- interference occurs rarely for small numbers of inner loop iterations
Loop Transformations to Improve Reuse

To Determine Temporal and Spatial Reuse:

for each loop \(l \) in a nest, consider \(l \) innermost

- partition references with group reuse (temporal and spatial locality)
 \(\Rightarrow \) reference groups

- compute the cost in cache lines accessed
 \(\Rightarrow \) loop cost

- rank the loops based on their cost
 \(\Rightarrow \) memory order is loop order with minimal cost

Key insight

If loop \(l \) promotes more reuse than loop \(k \) at the innermost position, then it probably promotes more reuse at any outer position

Selecting a loop permutation

- select memory order if legal
- if not, find a nearby legal permutation
- avoids evaluating many permutations
Reference Groups

Goal: Avoid overcounting cache lines accessed by multiple references that most likely access the same set of cache lines.

Two references Ref_1 and Ref_2 are in the same reference group with respect to loop l if:

1. (Group–temporal reuse)

 $\exists \quad Ref_1 \delta Ref_2$ (including input dep.) and

 (a) δ is a loop–independent dependence, or
 (b) δ_l is a small constant $d(\leq 2)$, and all other entries are 0, or

2. (Group–spatial reuse)

 Ref_1 and Ref_2 refer to the same array and differ by at most d' in the first subscript dimension ($d' \leq cls$). All other subscripts must be identical.
Reference Groups – Example

dk = 2, N-1
 dj = 2, N-1
 di = 2, N-1
 \[A(i,j,k) = A(i+1,j+1,k) + B(i,j,k) + \]
 \[B(i,j+1,k) + B(i+1,j,k) \]
Reference Groups – Example

do k = 2, N-1
do j = 2, N-1
do i = 2, N-1
 A(i,j,k) = A(i+1,j+1,k) + B(i,j,k) + B(i,j+1,k) + B(i+1,j,k)

<table>
<thead>
<tr>
<th>for loop j:</th>
<th>for loops i & k</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ A(i,j,k) }</td>
<td>{ A(i,j,k) }</td>
</tr>
<tr>
<td>{ A(i+1,j+1,k) }</td>
<td>{ A(i+1,j+1,k) }</td>
</tr>
<tr>
<td>{ B(i,j,k), B(i,j+1,k), B(i+1,j,k) }</td>
<td>{ B(i,j,k), B(i+1,j,k), B(i+1,j+1,k) }</td>
</tr>
</tbody>
</table>
Selecting a Loop Permutation

Cost of reference group for loop \(k \)

1. select representative from reference group
2. find cost (in cache lines) with \(k \) innermost

<table>
<thead>
<tr>
<th>invariant</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit-stride</td>
<td>((U_k - L_k + 1)/\text{cls})</td>
</tr>
<tr>
<td>otherwise</td>
<td>(U_k - L_k + 1)</td>
</tr>
</tbody>
</table>

3. multiply by trip counts of outer loops

Loop cost = sum of costs for reference groups

Matrix multiplication example

\[
\begin{align*}
\text{do } & j = 1, N \\
& \text{do } k = 1, N \\
& \quad \text{do } i = 1, N \\
& \quad \quad C(i,j) = C(i,j) + A(i,k) \times B(k,j)
\end{align*}
\]

<table>
<thead>
<tr>
<th>RefGroups</th>
<th>J</th>
<th>K</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(i,j)</td>
<td>(n \times n^2)</td>
<td>(1 \times n^2)</td>
<td>(\frac{1}{4}n \times n^2)</td>
</tr>
<tr>
<td>A(i,k)</td>
<td>(1 \times n^2)</td>
<td>(n \times n^2)</td>
<td>(\frac{1}{4}n \times n^2)</td>
</tr>
<tr>
<td>B(k,j)</td>
<td>(n \times n^2)</td>
<td>(\frac{1}{4}n \times n^2)</td>
<td>(1 \times n^2)</td>
</tr>
<tr>
<td>total</td>
<td>(2n^3 + n^2)</td>
<td>(\frac{5}{4}n^3 + n^2)</td>
<td>(\frac{1}{2}n^3 + n^2)</td>
</tr>
</tbody>
</table>

LoopCost (with \(\text{cls} = 4 \))
NearbyPermutation

Input:
- $O = \{i_1, i_2, ..., i_n\}$, the original loop ordering
- $D\mathcal{V}$ = set of original legal direction vectors for l_n
- $\mathcal{L} = \{i_{\sigma_1}, i_{\sigma_2}, ..., i_{\sigma_n}\}$, a permutation of O

Output:
- P a nearby permutation of O as close to \mathcal{L} as possible

Algorithm:
\[
P = \emptyset ; \quad k = 0 ; \quad m = n \\
\text{while } \mathcal{L} \neq \emptyset \\
\quad \text{for } j = 1, m \\
\quad \quad l = l_j \in \mathcal{L} \\
\quad \quad \text{if direction vectors for } \{p_1, ..., p_k, l\} \text{ are legal} \\
\quad \quad \quad P = \{p_1, ..., p_k, l\} \\
\quad \quad \quad \mathcal{L} = \mathcal{L} - \{l\} ; \quad k = k + 1 ; \quad m = m - 1 \\
\quad \quad \quad \text{break for} \\
\quad \quad \text{endif} \\
\quad \text{endfor} \\
\text{endwhile}
\]
Matrix Multiply - execution times in seconds

150 x 150

300 x 300

512 x 512

--- Sun Sparc2
----- Intel i860
------ IBM RS6k
Loop Fusion

Fortran 90 loops for ADI Integration

```fortran
DO I = 2, N
   X(I,1:N) = X(I,1:N) - X(I-1,1:N)*A(I,1:N)/B(I-1,1:N)
END DO
```

```fortran
DO I = 2, N
   DO K = 1, N
      X(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)
   END DO
   B(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)
END DO
```

```fortran
DO K = 1, N
   DO I = 2, N
      X(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)
      B(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)
   END DO
```

Example: Erlebacher - ADI integration program written in a Fortran 90 style
Loop Fusion

Two goals:

- improve temporal locality
- fuse all inner loops, creating a nest that is permutable

Distributed — hand distributed and put into memory order

- degrades locality between loop nests
- increases locality within loop nests

Fused — fusion only done if profitable

<table>
<thead>
<tr>
<th>Processor</th>
<th>Original</th>
<th>Memory Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Distributed</td>
</tr>
<tr>
<td>Sun Sparc2</td>
<td>.806</td>
<td>.813</td>
</tr>
<tr>
<td>Intel i860</td>
<td>.547</td>
<td>.548</td>
</tr>
<tr>
<td>IBM RS6000</td>
<td>.390</td>
<td>.400</td>
</tr>
</tbody>
</table>

Fusion is always an improvement (up to 17%).
Algorithm Summary

Goal: minimize actual $LoopCost$ by achieving memory order for as many statements in the nest as possible.

for each nest L_j in a set of adjacent nests

- compute reference groups for each l_i
- compute loop cost for each l_i and sort
- permutation with reversal?
- fuse inner loops and permute?
- distribute and permute?

fuse nests L_j?

Implementation:

- on top of ParaScope
- 25% increase in compilation time over just parsing and dependence analysis
- 33% increase over dependence analysis
Results

test suite (35 programs)

- Perfect Benchmarks
- SPEC Benchmarks
- NAS Benchmarks
- 4 additional programs

experiments

- on ability to transform programs
- simulated hit rates for RS/6000 and i860
- execution times on an RS/6000
Achieving Memory Order for Loop Nests

![Bar Chart]

- **Original**
- **Final**

<table>
<thead>
<tr>
<th>Percentage of Loop Nests in Memory Order</th>
<th>Original</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>= 90</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Achieving Memory Order for Inner Loops

Percent of Inner Loops in Memory Order

Number of Programs

Original
Final

<= 20 >= 40 >= 60 >= 70 >= 80 >= 90

>= 40 >= 60 >= 70 >= 80 >= 90
Performance Results in Seconds on RS6000

<table>
<thead>
<tr>
<th>Program</th>
<th>Original</th>
<th>Transformed</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc2d</td>
<td>410.13</td>
<td>190.69</td>
<td>2.15</td>
</tr>
<tr>
<td>dyfesm</td>
<td>25.42</td>
<td>25.37</td>
<td>1.00</td>
</tr>
<tr>
<td>flo52</td>
<td>62.06</td>
<td>61.62</td>
<td>1.01</td>
</tr>
<tr>
<td>dnasa7 (btrix)</td>
<td>36.18</td>
<td>30.27</td>
<td>1.20</td>
</tr>
<tr>
<td>dnasa7 (emit)</td>
<td>16.46</td>
<td>16.39</td>
<td>1.00</td>
</tr>
<tr>
<td>dnasa7 (gmtry)</td>
<td>155.30</td>
<td>17.89</td>
<td>8.68</td>
</tr>
<tr>
<td>dnasa7(vpenta)</td>
<td>149.68</td>
<td>115.62</td>
<td>1.29</td>
</tr>
<tr>
<td>applu</td>
<td>146.61</td>
<td>149.49</td>
<td>0.98</td>
</tr>
<tr>
<td>appsp</td>
<td>361.43</td>
<td>337.84</td>
<td>1.07</td>
</tr>
<tr>
<td>linpackd</td>
<td>159.04</td>
<td>157.48</td>
<td>1.01</td>
</tr>
<tr>
<td>simple</td>
<td>963.20</td>
<td>850.18</td>
<td>1.13</td>
</tr>
<tr>
<td>wave</td>
<td>445.94</td>
<td>414.60</td>
<td>1.08</td>
</tr>
</tbody>
</table>
Summary

Recap of Transformation Results

- 80% of nests were permuted into memory order
- 85% of inner loops were permuted into memory order
- Loop permutation is the most effective optimization
- 229 candidates for fusion, resulting in 80 nests
- 23 nests were distributed, resulting in 52 nests

Observations

- Many programs started out with high hit ratios
- Smaller cache sizes result in higher improvements in hit rates

⇒ Regardless of the original target architecture, compiler optimizations improve locality for uniprocessors
Scalar Replacement

Problem: register allocators never keep \(a(i) \) in a register

Idea: trick the allocator

1. locate patterns of consistent re-use
2. replace load with a copy into temporary
3. replace store with copy from temporary
4. may need copies at end of loop \((\text{re-use spans} > 1 \text{ iteration})\)

Benefits

- decrease number of loads and stores
- keep re-used values in registers
- often see improvements by factors of \(2\times\) to \(3\times\)

Scalar Replacement

\[
\begin{align*}
\text{do } i &= 1, n \\
\text{do } j &= 1, n \\
a(i) &= a(i) + b(j) \\
\text{enddo} \\
\text{enddo}
\end{align*}
\]

\[
\begin{align*}
\text{do } i &= 1, n \\
t &= a(i) \\
\text{do } j &= 1, n \\
t &= t + b(j) \\
\text{enddo} \\
a(i) &= t \\
\text{enddo}
\end{align*}
\]

Scalar replacement exposes the reuse of \(a(i)\)

- traditional scalar analysis is inadequate
- use dependence analysis to understand array references

\[
\begin{align*}
\text{do } i &= 1, n \\
a(i) &= a(i - 1) \\
\text{enddo} \\
t &= a(i - 1) \\
\text{do } i &= 1, n \\
a(i) &= t \\
t &= a(i) \\
\text{enddo}
\end{align*}
\]