
Parallel Program Design

Table of Contents

1. Goals, Decisions
2. Examples of Functional Parallelism

2.1 Ecosystem Modeling
2.2 Audio Signal Processing

3. Examples of Data Parallelism
3.1 Image Processing
3.2 Effect of Pollution on Forested Areas
3.3 Chess

4. Walk Through
4.1 Problem Description
4.2 Decomposition
4.3 Code Structure

Cornell Theory Center

Virtual Workshop Module

Daniel Sverdlik

Video Introduction

View with modem or broadband connection
Read the text transcript

Page 1 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

4.4 SPMD Solution
4.5 SPMD with Master Worker Embedded

5. Repositories

References Quiz Evaluation Navigation Guide

1. Goals, Decisions

1.1 Goals (ideal)

Speedup is defined as the serial execution time divided by the parallel execution
time, for a given problem size and number of processors. Perfect speedup
(generally not attainable) would equal the number of processors. Scalability looks
at how speedup is preserved as the problem size and number of processors
increases.

Ideal (read: unrealistic) goals for writing a program with maximum speedup and
scalability:

Each process has a unique bit of work to do, and does not have to redo any
other work in order to get its bit done.
Each process stores the data needed to accomplish that work, and does not
require anyone else's data.
A given piece of data exists only on one process, and each bit of
computation only needs to be done once, by one process.
Communication between processes is minimized.
Load is balanced; each process should be finished at the same time.

Usually it is much more complicated than this!

Keep in mind that:

There may be several parallel solutions to your problem.
The best parallel solution may not flow directly from the best serial solution.

1.2 Major Decisions

Data or Functional Parallelism?

Page 2 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Partition by task (functional parallelism)
Each process performs a different "function" or executes a different
code section
First identify functions, then look at the data requirements
Commonly programmed with message-passing libraries

Partition by data (data parallelism)
Each process does the same work on a unique piece of data
"Owner computes"

First divide the data. Each process then becomes responsible for
whatever work is needed to process that data.

Data placement is an essential part of a data-parallel algorithm
Data parallelism is probably more scalable than functional parallelism
Can be programmed at a high-level with High Performance Fortran
(HPF), or at a lower-level with message-passing libraries.

These can be used in combination. A program can be partitioned by
function; each function can then be partitioned by data. In addition, there are
some cases in which the distinction between the two categories blurs.

Additional material on data and functional parallelism is in the module
Fundamentals of Distributed Memory Computing, specifically section 9.

SPMD or Master Worker?

Single Program Multiple Data (SPMD)
All processes run the same program, operating on different data. This
model is particularly appropriate for problems with a regular,
predictable communication pattern. These tend to be scalable if all
processes read/write to files and if global communication is avoided.

Master Worker
A single program (called the Master) coordinates the work done on all
the processes. These are called Workers. The Master may or may not
contribute to computation. This model has limited scalability due to the
communication bottleneck caused by all Workers needing to
communicate with a single Master.
The Master and Workers may all run the same program, or different
programs. If they are running the same program, conditional (if)
statements cause different tasks to run different code segments.

The background material on SPMD and Master Worker is in the module
Fundamentals of Distributed Memory Computing, specifically section 9.

Page 3 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Additional material on data and functional parallelism is in the module
Fundamentals of Distributed Memory Computing, specifically section 9.

2. Examples of Functional Parallelism

This section contains two examples of types of problems that could be solved
using functional parallelism.

2.1 Ecosystem Modeling

The diagram shows five processes, each running a different program. In this
case, each program calculates the population of a given group, where each
group's growth depends on that of its neighbors. As time progresses, each
process calculates its current state, then shares information with the neighbor
populations, so they can all go on to calculate the state at the next time step.

The load balancing for this program is static (pre-scheduled) -- each process'
load is determined and inflexible at the start of the application. It is also likely to
be unequal, with the different programs requiring different amounts of
computation before sharing state.

The communication pattern is a ring. This will influence how the different
programs are mapped to physical processors. Those programs that need to
communicate should ideally be only one communication "hop" from each other.

Page 4 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

2.2 Audio Signal Processing (pipeline)

To process the audio signal, the data set is passed through three distinct
computational filters. Each filter is a separate process. The first chunk of data
must pass through the first filter before progressing to the second. When it does,
the second chunk of data passes through the first filter. By the time the third
chunk of data is in the first filter, all three processes are busy.

Again, load balancing is static and will be unequal if different filters require
different amounts of computation. The communication pattern is a 1-dimensional
mesh.

3. Examples of Data Parallelism

This section contains three examples of types of problems that could be solved
using data parallelism.

3.1 Image Processing

Page 5 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

The diagram above shows a SPMD solution. All four processes are running the
same three-step program, processing different data. The dashed horizontal lines
represent barriers or synchronization points. Each process must complete that
step before all processes can proceed to the next step.

The sketches below show an image that will be processed. The green points
represent locations where there is an image, the black points where there is not.
The layout on the left shows a 2-D block decomposition, on the right a 1-D block
decomposition.

Data decomposition:

Page 6 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Domain characteristics
Large multidimensional matrix encoding location and color
Homogeneous members -- all points require the same amount of
calculation
The value calculated for each point will depend on neighboring values.
For example, a green point can be identified as "noise", rather than as
part of the pattern, by recognizing that it is surrounded by black points.

Goals for domain decomposition
Balance computational load
Minimize and regularize communication between processes

Technique
Block decomposition

Assign each process a contiguous set of points. Since each point
requires the same amount of work, points should be divided
evenly between processes. Load balancing is static since the
division of work is determined at compile time.

The communication pattern must be considered when deciding upon a
decomposition geometry. Higher dimension decompositions are
generally preferable, since they minimize surface to volume ratio.

Processes will need to exchange their outer rows and columns
with neighboring processes. In the 2-D decomposition shown
above, each process has 13 edge points which will need to be
communicated, for a total of 52 points. In the 1-D decomposition,
p1 and p4 each have 12 edge points, and the middle processes
have 24, for a total of 72.

What if domain members are not homogeneous?
If the green points require more computation than the black, neither
decomposition is ideal. The 1-D decomposition is slightly more
imbalanced than the 2-D. More sophisticated methods are needed to
decompose the image.

3.2 Effect of Pollution on Forested Areas

Page 7 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

This program calculates the effect of pollution on tree growth and mortality for a
geographic area.

SPMD
Each process will run the same program.

Domain
Irregular geometry, dynamic

The domain is irregular because it is broken up by the lake and the
city (no trees). It is dynamic because the computation shifts with
time. Initially, only trees near the pollution source may be affected,
so may require more computation. By the end of the simulation,
these trees may have died (now requiring no computation) and
trees far from the source may be showing long-term effects.

Non-homogeneous members
Different tree species may be affected in different ways, and thus
require different amounts of computation.

No interaction between members (trees)

Technique
The diagram shows cyclic decomposition, where each process is dealt
slices of data in round-robin fashion. The areas of no work (lake and
city) are now divided between multiple processes. As computation
requirements shift with time, the load should remain balanced. This
model works well for this program because there is no communication

Page 8 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

pattern based on location of members.

3.3 Chess

In this example, a computer is playing chess. In choosing its next move, it will
analyze responses to all possible moves for one or more rounds into the future.

Domain
Non-homogeneous members

Different moves require different amounts of computation. One
may allow checkmate on the next response, so can be eliminated
immediately. Others may require projection further into the future.

No interaction between members
When analyzing one move, no information is needed about other
moves.

Technique
Self-scheduling (or "pool of tasks")

The figure shows the Master process on the left, ready to
distribute data on possible moves to the Workers. The four
Workers on the right are all doing the same analysis on different
data (different moves). When a Worker is finished analyzing a
move, the Master assigns it another move to analyze.

Dynamic load balancing
The specific work assigned to processes is determined at run time.

The communication pattern is one to all
This program will not scale if there is one process managing the pool of
tasks. The Master will become a bottleneck as the number of Workers

Page 9 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

increases.

4. Walk Through

In this section we will walk through the parallel program development of a simple
problem.

4.1 Problem Description

This problem was developed from a description found in Fox et al. (1988) Solving
Problems on Concurrent Processors, vol. 1. Prentice Hall.

Calculate the amplitude along a uniform, vibrating string after a specified amount
of time has elapsed.

Numerical Solution

First, impose a framework on the problem.

Page 10 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

The framework includes amplitude on the y axis, i as the position index along the
x axis, and node points imposed along the string. The amplitude will be updated
at discrete time steps.

The equation to be solved is the one-dimensional wave equation:

A(i,t+1) = (2.0 * A(i,t)) - A(i,t-1)
+ (c * (A(i-1,t) - (2.0 * A(i,t)) + A(i+1,t)))

where c is a constant.

Note that amplitude will depend on previous timesteps (t, t-1) and neighboring
points (i-1, i+1).

4.2 Decomposition

4.2.1 Decompose the work by function or data?

Function: divide the computation into chunks of disjoint or unassociated work

All the work in this problem is accomplished in one loop. It would be
contrived (and more work!) to split it up.

Data: Give each process a subset of a domain

The domains for this problem are position along the string (i), and time (t)

Which can be computed concurrently?
TEST FOR DATA INDEPENDENCE:
If the calculation of the value of an element of an array in a loop is
based upon the value of another element of the same array, calculated
in a different iteration, then the iterations cannot be done concurrently.
Examples:

F(I)= F(I-1) is NOT independent
F(I)= F(I)*2 is independent
F(I)= G(I-1) is independent

Time fails this test: A(i,t+1) requires A(i,t) and A(i,t-1).
This is called a data dependence. (It seems intuitive that a simulation
can't be decomposed by time -- this is a more concrete test)
Position passes this test: A(i,t+1) does not require any other values at
(t+1).

Page 11 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

What data is required?
Amplitude depends on values at neighboring points for the previous
timestep.
A(i,t+1) requires A(i-1,t) and A(i+1,t)
This will result in communication overhead and idle time spent waiting
for processes with unequal work loads to "catch up".

4.2.2 How to decompose by position?

Data replication

Some program parameters are replicated, but not the amplitude array
In general, if large amounts of data are replicated, this will limit the size
of the subset of the domain that can be stored on one process, and
thus the largest problem size that can be solved. This is not a problem
for the wave code.

Load balancing

All points require equal work, so the points should be divided equally
amongst the processes.
Cyclic

A cyclic decomposition would have each point given to the available
nodes in turn until all are distributed, like dealing cards to the players.
In this distribution, the work load is identical for each set of points +/-
one point.

Block
A block decomposition would have the work split into the number of
nodes, leaving contiguous data points on the same node. In this
distribution, the work load identical for each block of points +/- one
point.

Communication

Cyclic
Neighboring points are all assigned to different processes, therefore
each point would require communication.

Block
Only the point at each end of the block requires communication, so the
larger the block size, the smaller percentage of communication
overhead.

Page 12 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Block decomposition by position

Each color represents a different process. The boxes at the edges of each
color indicate that the endpoints will require communication at each time
step with the neighboring process.

4.3 Code Structure

1. Read in starting values
2. Establish communication channels
3. Divide data among processes

4. Exchange endpoints
5. Calculate amplitude for new time step

Repeat last two steps for given number of time steps

6. Output results

4.4 SPMD Solution

This program is:

SPMD because all processes run the same program
DATA PARALLEL because the work is partitioned by data
SCALABLE because none of the work is constrained by one process and no
global communication is required

Page 13 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Reading/writing data

All tasks read in the number of points along the string and the number of
time steps
Reading in the array of initial amplitudes can be done by

All tasks read in all data, throw out all but their chunk
or- Supply initial data in separate files, each task reads in its own file
or- Read in appropriate lines from a direct-access file. This method is
illustrated in the complete wave code linked to on the following page.

4.4.1 Pseudo Code

 program wave_spmd

C Learn number of tasks and taskid
 call initialize task
 call get task identification and information

C Identify left and right neighbors

C Get program parameters
 read tpoints, nsteps

C Divide data amongst processes
 read values

C Update values for each point along string
 do t = 1, nsteps
C Send to left, receive from right
 call send left endpoint to left neighbor
 call receive left endpoint from right neighbor
C Send to right, receive from left
 call send right endpoint to right neighbor
 call receive right endpoint from left neighbor

C Update points along line
 do i = 1, npoints
 newval(i) = (2.0 * values(i)) - oldval(i)
 & + (sqtau * (values(i-1) - (2.0 * values(i)) + values(i+1)))
 end do

 end do

C Write results out to file
 write values

Page 14 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

 call terminate parallel environment

Click here for a more fully-developed pseudo code using MPI calls.

Click here for the complete program.

4.5 SPMD with Master Worker Embedded

This program is:

SPMD because all processes run the same program
DATA PARALLEL because the work is partitioned by data
MASTER WORKER because flow control assigns certain work to a "Master"
or "Worker"

Reading/writing data

Master reads in number of points along the string and number of time steps,
broadcasts to all Workers
Master reads in the array of initial positions, then sends a chunk to each
Worker
After final time step, each Worker sends its chunk of the array back to the
Master
Master writes out final results

4.5.1 Pseudo Code

All

 program wave_mw

C Learn number of tasks and taskid
 call initialize task
 call get task identification and information

Master

C Get program parameters
 if (taskid .eq. MASTER) then
 read tpoints, nsteps

C Master broadcasts total points, time steps
 call send two numbers to all Workers

Workers
 else
C Workers receive total points, time steps
 call all Workers receive two numbers

Page 15 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

 end if

Master

 if (taskid .eq. MASTER) then
 do i = 1, tpoints
 read(10) values(i)
 end do

C Master sends chunks to Workers
 do i = 1, nproc-1
C Send first point and number of points handled t
 call send two numbers

C Send chunk of array to Worker
 call send chunk of array
 end do

Workers

 else
C Receive first point and number of points
 call receive two numbers

C Receive chunk of array
 call receive chunk of array

 end if

All

C Update values along the wave for nstep time steps
 do t = 1, nsteps

C Send to left, receive from right
 call send left endpoint to left neighbor
 call receive left endpoint from right neighbor
C Send to right, receive from left
 call send right endpoint to right neighbor
 call receive right endpoint from left neighbor

C Update points along line
 do i = 1, npoints
 newval(i) = (2.0 * values(i)) - oldval(i) +
 & (sqtau * (values(i-1) - (2.0 * values(i)) + values
 end do

 end do

Master

C Master collects results from Workers and prints
 if (taskid .eq. MASTER) then
 do i = 1, nproc - 1
C Receive first point and number of points
 call receive two numbers

C Receive results
 call receive chunk of results

Page 16 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

Click here for a more fully-developed pseudo code using MPI calls.

Click here for the complete Fortran program.
Click here for the complete C program.

5. Repositories

Online locations of parallel programming solutions to a variety of computational
problems.

High Performance Fortran Applications from CRPC and NPAC

References

Ian Foster
"Designing and Building Parallel Programs"
1995 Addison-Wesley Publishing Company, Inc
Online version of this book

Geoffrey C. Fox
"Solving Problems on Concurrent Processors"
1988 Prentice Hall

C Write out results
 write results(i)

Workers

 else
C Send first point and number of points handled to Mast
 call send two numbers

C Send results to Master
 call send results
 end if

All
 call terminate parallel environment
 end

Page 17 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

 Take a multiple-choice quiz on this material, and submit it for grading.

 Please complete this short evaluation form. Thank you!

© 2002 Cornell University. All Rights Reserved.
Read our Copyright guidelines.
Last modified on 09/23/2002 13:13:07

Page 18 of 18Parallel Program Design

9/23/2002http://www.tc.cornell.edu/Services/Edu/Topics/ParallelProgDesign/more.asp

