Axioms of Probability:

Sample Space:

The set of all possible outcomes of an experiment is known as the *sample space* of the experiment and it is denoted by S. If sample space is a set of finite number of elements or unending sequence of the natural number then it is a discrete sample space or else it is continuous sample space. For example

- If the outcome of an experiment to determination of gender of a newborn child then sample space consist on $S = \{boy, girl\}$
- If a fair coin is tossed then sample space will be $S = \{Head, tail\}$
- When a fair dice is rolled, the sample space of this experiment is $S = \{1,2,3,4,5,6\}$
- If the experiment consists of flipping two fair coins then sample space becomes $S = \{HH, HT, TH, TT\}$
- If the experiment is measuring the lifetime of tube lights then sample space is made of all nonnegative real numbers (Continuous Sample Space) $S = \{x| x \in \mathbb{R}^+ \} or \{x|0 \leq x < \infty\}$

Event:

Let S be a Sample space of an experiment. An event is any possible outcome of the experiment. Also it is subset of the sample space. For example

- If the newborn baby is a boy then event is $E = \{boy\}$
- If a fair coin is tossed then a head appears then event becomes $E = \{Head\}$
- A fair dice is rolled, 6 appears then the event is $E = \{6\}$
- If the experiment consists of flipping two fair coins then and event is a Head appears on first coin $E = \{HH, HT\}$
- If $E = \{x|0 \leq x \leq 5\}$ then E is event that tube light does not last longer than 5 years.
Operations on Events:

Union:
Consider A and B be two events of an experiment. $A \cup B$ is an event that will occur if either A or B occurs and it consists of all outcomes that are either in A or in B or in both A and B. For example,

- Let $A = \{HT, TH\}$ and $B = \{HH, TH\}$ then $E = A \cup B = \{HH, HT, TH\}$
- Let $A = \{1,2,3,4\}$ and $B = \{3,4,5,\}$ then $E = A \cup B = \{1,2,3,4,5\}$
- Let $A = \{x|0 \leq x \leq 10\}$ and $B = \{x|0 \leq x \leq 25\}$ then $E = A \cup B = \{x|0 \leq x \leq 25\}$

Similarly union of more than two events is defined as

If $A_1, A_2, A_3 \ldots, A_n$ are events of some experiment then

$$E = \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

is an event that consist of all outcomes that are in A_i for at least value of $i = 1,2,3,4,\ldots$

Intersection:
Consider A and B be two events of an experiment. $A \cap B$ is an event that will occur if A and B occurs and it consist of all outcomes that are in both A and B. For example,

- Let $A = \{HT, TH\}$ and $B = \{HH, TH\}$ then $E = A \cap B = \{TH\}$
- Let $A = \{1,2,3,4\}$ and $B = \{3,4,5,\}$ then $E = A \cap B = \{3,4\}$
- Let $A = \{x|0 \leq x \leq 10\}$ and $B = \{x|0 \leq x \leq 25\}$ then $E = A \cap B = \{x|0 \leq x \leq 10\}$

Similarly intersection of more than two events is defined as

If $B_1, B_2, B_3 \ldots, B_n$ are events of some experiment then

$$F = \bigcap_{i=1}^{n} B_i = B_1 \cap B_2 \cap \ldots \cap B_n$$

is an event that consist of all outcomes that are all in the events B_i, $i = 1,2,3,4,\ldots$

Two events that have no outcome in common are said to be mutually exclusive or disjoint event.

E.g. Let $A = \{1,2,3,4\}$ and $B = \{5,6\}$ then $E = A \cap B = \{\} = \phi$
Complement:
Let A be an event of an experiment. Complement of A, denoted by A^c or A', is an event that consist of set of all outcomes in sample space that are not in A. For example
- If the experiment consists of flipping two fair coins then sample space becomes $S = \{HH, HT, TH, TT\}$ and suppose that $A = \{HT, TH\}$ then $A^c = \{HH, TT\}$
- A fair dice is rolled, 6 appears then the event is $E = \{6\}$ then $E^c = \{1,2,3,4,5\}$

DeMorgan’s laws:
\[
\left(\bigcup_{i=0}^{n} A_i\right)^c = \bigcap_{i=0}^{n} A_i^c \quad \text{(Prove it!)}
\]
\[
\left(\bigcap_{i=0}^{n} A_i^c\right)^c = \bigcup_{i=0}^{n} A_i^c \quad \text{(Prove it!)}
\]

Identities:
Suppose that A, B and C are events of a random experiment then
\[
(A \cup B) \cup C = A \cup (B \cup C)
\]
\[
(A \cap B) \cap C = A \cap (B \cap C)
\]
\[
S^c = \phi
\]
\[
\phi^c = S
\]

Probability:
Let S be the sample space of a random experiment. Let A be an event then probability of A is defined as
\[
P(A) = \frac{\text{Size of } A}{\text{Size of } S}
\]
\[
P(A) = \frac{\# \text{ of success ways}}{\text{Total } \# \text{ of ways}}
\]

Example: If an experiment consists of tossing a fair coin then what is the probability of $E = \{\text{Head}\}$?

- $S = \{\text{Head, Tail}\}$
- $E = \{\text{Head}\}$
- Size of $S = 2$
- Size of $E = 1$
\[P(E) = \frac{\text{Size of } E}{\text{Size of } S} = \frac{1}{2} \]

Relative Frequency definition of Probability:

If an experiment, with sample space \(S \), is repeated \(N \) times under identical conditions and an event \(A \) is occurred \(n \) times then the probability of \(A \) is given as

\[P(A) = \lim_{N \to \infty} \frac{n}{N} \]

Example: Suppose that coin toss experiment is repeated 100 times and head appears 49 times.

\[P([\text{Head}]) = \frac{49}{100} = 0.49 \]

Axioms of probability:

Consider an experiment with sample space \(S \). Assume that for each event \(A \) of the sample space \(P(A) \) is given

Axiom # 1:

\[0 \leq P(A) \leq 1 \]

Axiom # 2:

\[P(S) = 1 \]

Axiom # 3:

For any two (or more than two) mutually exclusive events \(A \) & \(B \)

\[P(A \cup B) = P(A) + P(B) \]

Example: Two coin are tossed what is the probability of

\[E = \text{Getting exactly one head} \]

\[F = \text{At least one head} \]

Sol: The sample space is \(S = \{HH, TH, HT, TT\} \) \(|S| = 4 \)

\[E = \{HT, TH\}, |E| = 2 \]

\[P(E) = \frac{|E|}{|S|} = \frac{2}{4} = \frac{1}{2} \]

\[F = \{HT, TH, HH\}, |F| = 3 \]

\[P(F) = \frac{|E|}{|S|} = \frac{3}{4} \]
Example: A committee of 5 members is to be selected from 6 men and 9 women. Assume each member is chosen at random what is the probability that committee consist of 3 men and 2 women?

\[P(E) = \frac{^6C_3 \times ^9C_2}{^15C_5} \]