Problem 1. Consider rolling a fair die. What is the probability of rolling a 4?

Answer. When we say fair, we mean that all of the outcomes 1, 2, 3, 4, 5, 6 are equally likely. Since probabilities sum to 1, each outcome has probability $1/6$. In this problem, we are asked about the probability of a single outcome so the probability is $1/6$.

Problem 2. Consider rolling a fair die. What is the probability of rolling a 4 or a 6?

Answer. The sample space looks like $S = \{1, 2, 3, 4, 5, 6\}$ which each outcome being equally likely with probability $1/|S| = 1/6$.

The event we are interested in is $E = \{4, 6\}$. The probability of this event (recall equally likely outcomes) is

$$P = \frac{|E|}{|S|} = \frac{2}{6} = \frac{1}{3}$$

Problem 3. You roll a fair die. You do not look at the result. Your friend tells you that you rolled an odd number. What is the probability that you rolled a 6?

Answer. 0

Problem 4. You roll a fair die. You do not look at the result. Your friend tells you that you rolled an odd number. What is the probability that you rolled a 3 or a 5?

Answer. Here the sample space would be $S = \{1, 3, 5\}$ with each outcome being equally likely. The event we are interested in is $E = \{3, 5\}$. Then $P(E) = |E|/|S| = 2/3$.

Problem 5. How many five card hands are there?

Answer. We can think about putting five cards from a standard deck into a sequence. The number of such sequences is

$$52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$$

But we were asked about hands, not sequences. If we interchange any two cards that we are holding, we don’t regard that as a new hand. So, there is an overcounting by the number of arrangements of any five given cards which is 5!

Then the number of hands is

$$\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!} = \frac{52!}{5!} = \frac{52!}{5! \cdot 47!} = \binom{52}{5}$$

Problem 6. What is the probability of drawing a five card hand consisting entirely of red cards?

Answer. Consider first how many 5-sequences of red cards there are:

$$26 \cdot 25 \cdot 24 \cdot 23 \cdot 22$$

Any rearrangement of such a sequence is considered the same hand, so we have overcounted by 5! and the number of 5 card hands with all cards red is

$$\binom{26}{5}$$
\[
\frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22}{5!} = \frac{26!/21!}{5!} = \frac{26!}{5!21!} = \binom{26}{5}
\]

There are \(\binom{52}{5} \) 5 card hands in total, each equally likely so the number of 5 card hands with all cards red is

\[
\binom{26}{5} / \binom{52}{5}
\]

Problem 7.

What is the probability of being fairly dealt a five card hand that consists of the ace of hearts, two of hearts, 3 of clubs, 4 of spades, and five of diamonds?

Answer. This describes exactly one unique five card hand and there are \(\binom{52}{5} \) possible hands. So the probability is

\[
\frac{1}{\binom{52}{5}}
\]

Problem 8. What is the probability of being dealt a five card hand that contains the ace of hearts, two of hearts, 3 of clubs, and 4 of spades?

Answer. Four cards are fixed, we need to choose one of 48 so there are 48 such hands, each equally likely out of \(\binom{52}{5} \) equally likely hands. So the probability is

\[
\frac{48}{\binom{52}{5}}
\]

Problem 9. What is the probability of being dealt a five card hand that does not contain the case of hearts?

Answer. First consider how many five card hands contain the ace of hearts. There is one way to choose the ace of hearts, there are \(\binom{51}{4} \) ways to choose the remaining four cards.

The probability of a five card hand that does contain the ace of hearts is

\[
\binom{51}{4} / \binom{52}{5}
\]

Then the probability of this event not occurring is

\[
1 - \binom{51}{4} / \binom{52}{5}
\]

Problem 10. Consider a standard well shuffled 52 card deck of cards. What is the probability of being dealt a three card hand containing no aces?

Answer. There are \(\binom{52}{3} \) possible 3 card hands.

The number of possible 3 card sequences with no aces is 48 \cdot 47 \cdot 46. This overcounts by 3! since order in a hand does not matter, so number of three card hands with no aces is

\[
\frac{48 \cdot 47 \cdot 46}{3!} = \frac{48!}{3!45!} = \binom{48}{3}
\]
Problem 11. You are dealt 5 cards from a standard well-shuffled 52 card deck. What is the probability of a flush (all cards from the same suit).

Answer. We can think of constructing a flush as a process of first selecting one suit of four and then from 13 cards of that suit selecting 5. Then there are \(4 \cdot \binom{13}{5} \) ways of doing this. There are \(\binom{52}{5} \) 5 card hands, so the probability is

\[
\frac{4 \cdot \binom{13}{5}}{\binom{52}{5}}
\]

The desired answer then is

\[
\frac{\binom{48}{3}}{\binom{52}{3}}
\]