MATH 230: Probability
Lec # 26

Independent random variable:
Let X and Y be two random variables. Random variables are said to be independent if for any two sets of real numbers A and B

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}$$

$$P\{X \leq a, Y \leq b\} = P\{X \leq a\}P\{Y \leq b\}$$

Let X and Y be random variables with joint density function $f(x, y)$ then X and Y are independent if the following condition holds

$$f(x, y) = f_X(x)f_Y(y) \; \forall \; x, y$$

Example: Suppose that $n + m$ independent trials having a common probability of success p are performed. If X is the number of successes in the first n trials, and Y is the number of successes in the final m trials, then show that X and Y are independent.

Sol: Since knowing the number of successes in the first n trials does not affect the distribution of the number of successes in the final m trials. Hence X and Y are independent

$$P\{X = x, Y = y\} = \binom{n}{x} p^x (1-p)^{n-x} \times \binom{m}{y} p^y (1-p)^{m-y} \; \forall \; 0 \leq x \leq n \; 0 \leq y \leq m$$

Example: Suppose that the number of people who enter a post office on a given day is a Poisson random variable with parameter λ. Show that if each person who enters the post office is a male with probability p and a female with probability $1 - p$, then the number of males and females entering the post office are independent Poisson random variables with respective parameters λp and $\lambda (1 - p)$.

Sol: let X and Y be random variables that represents the number of males and females entering in the post office respectively. We will use the conditional probability to prove independence

$$P(E) = P(E|A)P(A) + P(E|A^c)P(A^c)$$

$$P\{X = i, Y = j\} = P\{X = i, Y = j|X + Y = i + j\}P\{X + Y = i + j\} + P\{X = i, Y = j|X + Y \neq i + j\}P\{X + Y \neq i + j\}$$
Since the probability of number of males and number females given that number people is not equal to the sum of males and females is equal to zero

\[P\{X = i, Y = j | X + Y \neq i + j\} = 0 \]

\[P\{X = i, Y = j\} = P\{X = i, Y = j | X + Y = i + j\} P\{X + Y = i + j\} \]

The probability of the total number of the people is given as

\[P\{X + Y = i + j\} = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} \]

Given that \(i + j \) people enter the post office, since each person entering will be male (or female) with probability \(p \) it follows that probability that exact \(i \) of them male (or \(j \) of them female) is just the binomial probability

\[P\{X = i, Y = j | X + Y = i + j\} = \binom{i+j}{i} p^i (1-p)^j \]

Therefore

\[P\{X = i, Y = j\} = P\{X = i, Y = j | X + Y = i + j\} P\{X + Y = i + j\} \]

\[P\{X = i, Y = j\} = \binom{i+j}{i} p^i (1-p)^j \times e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} \]

\[P\{X = i, Y = j\} = \frac{e^{-\lambda p} (\lambda p)^i}{i!} e^{-\lambda (1-p)} \left\{ \frac{[\lambda(1-p)]^j}{j!} \right\} \]

Now

\[P\{X = i\} = \frac{e^{-\lambda p} (\lambda p)^i}{i!} \sum_j e^{-\lambda (1-p)} \left\{ \frac{[\lambda(1-p)]^j}{j!} \right\} \]

\[P\{X = i\} = \frac{e^{-\lambda p} (\lambda p)^i}{i!} \sum_j e^{-\lambda (1-p)} \left\{ \frac{[\lambda(1-p)]^j}{j!} \right\} \]

\[P\{Y = j\} = \sum_i \frac{e^{-\lambda p} (\lambda p)^i}{i!} e^{-\lambda (1-p)} \left\{ \frac{[\lambda(1-p)]^j}{j!} \right\} \]

\[P\{Y = j\} = e^{-\lambda (1-p)} \left\{ \frac{[\lambda(1-p)]^j}{j!} \right\} \]

\[P\{X = i, Y = j\} = P\{X = i\} P\{Y = j\} \]