Problem 1. You select seven cards from a standard 52 card deck. Let X be the number of aces in the hand selected. What is the pmf for X?

Answer. All seven card hands are equally likely. There are $\binom{52}{7}$ such hands.

There are four aces, so the number of ways to choose x aces and $7-x$ other cards from 48 is

$\binom{4}{x}\binom{48}{7-x}$

As all hands are equally likely, we divide by the total number of seven card hands to get the probability of getting x aces in the hand

$$\frac{\binom{4}{x}\binom{48}{7-x}}{\binom{52}{7}}$$

Then the pmf for X is

$$f_X(x) = \begin{cases} \frac{\binom{4}{x}\binom{48}{7-x}}{\binom{52}{7}}, & x = 0, 1, 2, 3, 4 \\ 0, & \text{else} \end{cases}$$

Problem 2. You select seven cards from a standard 52 card deck. Let Y be the number of queens in the hand selected. What is the pmf for Y?

Answer. Same reasoning as before.

$$f_Y(y) = \begin{cases} \frac{\binom{4}{y}\binom{48}{7-y}}{\binom{52}{7}}, & y = 0, 1, 2, 3, 4 \\ 0, & \text{else} \end{cases}$$

Problem 3. Find the joint pmf f_{XY} for X and Y.

Answer. There are $\binom{52}{7}$ 7-card hands. All such hands are equally likely.

The number of ways to get x aces from four aces, y queens from four queens and then $7-x-y$ other cards from 44 cards that are not aces or queens is $\binom{4}{x}\binom{4}{y}\binom{44}{7-x-y}$.

The joint pmf then is

$$f_{XY}(x, y) = \begin{cases} \frac{\binom{4}{x}\binom{4}{y}\binom{44}{7-x-y}}{\binom{52}{7}}, & \text{for } x, y = 0, 1, 2, 3, 4 \text{ and } x+y \leq 7 \\ 0, & \text{else} \end{cases}$$

Problem 4. Are X and Y statistically independent?
Problem 5. Suppose that there are three sections of probability. Each of the sections has sophomores and juniors in it. These are distributed according to the table

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Section 2</th>
<th>Section 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomores</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Juniors</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Let X be a random variable that takes the value 1, 2, 3 depending on what section a randomly chosen sophomore taking probability is in.

Let Y be a random variable that takes the value 1, 2, 3 depending on what section a randomly chosen junior taking probability is in.

Find f_X, f_Y, and f_{XY}.

Problem 6. Suppose that rvs X and Y have a joint distribution given by

$$f_{XY}(x, y) = \begin{cases}
 2x + 2y & \text{for } 0 \leq x \leq y \leq 1 \\
 0 & \text{else}
\end{cases}$$

Find f_X, f_Y. Are X and Y independent?

Answer. X and Y are dependent. After finding f_X and f_Y we see that $f_{XY} \neq f_X \cdot f_Y$.

Problem 7. Suppose that X and Y have a joint cdf F_{XY} defined by

$$F_{XY}(x, y) = \begin{cases}
 (1 - e^{-x})(1 - e^{-y}) & \text{for } x, y > 0 \\
 0 & \text{else}
\end{cases}$$

What are the marginal pdfs f_X and f_Y?

Answer. If we differentiate F_{XY} wrt x and y we get the joint pdf

$$f_{XY}(x, y) = \begin{cases}
 e^{-x} \cdot e^{-y} & \text{for } x, y > 0 \\
 0 & \text{else}
\end{cases}$$

We can now find the individual pdfs by integrating out the other variable.

$$f_X(x) = \begin{cases}
 e^{-x} & \text{for } x > 0 \\
 0 & \text{else}
\end{cases}$$

and

$$f_Y(y) = \begin{cases}
 e^{-y} & \text{for } y > 0 \\
 0 & \text{else}
\end{cases}$$

Problem 8. Suppose that X and Y have a joint cdf F_{XY} defined by

$$F_{XY}(x, y) = \begin{cases}
 (1 - e^{-x})(1 - e^{-y}) & \text{for } x, y > 0 \\
 0 & \text{else}
\end{cases}$$

What are the marginal cdfs F_X and F_Y?

Answer. We find the marginal distributions from the joint cdf by letting the other variable go to infinity.
\[F_X(x, y) = \begin{cases} 1 - e^{-x} & \text{for } x > 0 \\ 0 & \text{else} \end{cases} \]

\[F_Y(x, y) = \begin{cases} 1 - e^{-y} & \text{for } y > 0 \\ 0 & \text{else} \end{cases} \]

Problem 9. Are \(X \) and \(Y \) in the previous problem statistically independent?

Answer. Yes, \(F_{XY} = F_X \cdot F_Y \)

Problem 10. Suppose that \(X \) and \(Y \) have a joint distribution \(f_{XY} \) defined by

\[f_{XY} = \begin{cases} \frac{1}{x!y!} \lambda^x \mu^y e^{-(\lambda+\mu)} & \text{for } x, y = 0, 1, 2, 3, \ldots \\ 0 & \text{else} \end{cases} \]

Are \(X \) and \(Y \) independent?