The most widely used formal logic method is **FIRST-ORDER PREDICATE LOGIC**

Reference: Chapter Two The predicate Calculus
Luger’s Book
Examples included from Norvig and Russel.
First-order logic

- Whereas propositional logic assumes the world contains **facts**,
- first-order logic (like natural language) assumes the world contains
 - **Objects**: people, houses, numbers, colors, baseball games, wars, …
 - **Relations**: red, round, prime, brother of, bigger than, part of, comes between, …
 - **Functions**: father of, best friend, one more than, plus, …
Syntax of FOL: Basic elements

- Constants: john, 2, lums,...
- Predicates: brother, >,...
- Functions: sqrt, leftsideOf,...
- Variables: X, Y, A, B,...
- Connectives: ¬, ⇒, ∧, ∨, ⇔
- Equality: =
- Quantifiers: ∀, ∃
Truth in first-order logic

- Sentences are true with respect to a model and an interpretation.

- Model contains objects (domain elements) and relations among them.

- Interpretation specifies referents for:
 - Constant symbols → objects
 - Predicate symbols → relations
 - Function symbols → functional relations

- An atomic sentence $\text{predicate}(\text{term}_1, \ldots, \text{term}_n)$ is true iff the objects referred to by $\text{term}_1, \ldots, \text{term}_n$ are in the relation referred to by predicate.
Alphabets-I

Predicates, variables, functions, constants, connectives, quantifiers, and delimiters

Constants: (first letter small)
- bLUE: a color
- sanTRO: a car
- crow: a bird

Variables: (first letter capital)
- Dog: an element that is a dog, but unspecified
- Color: an unspecified color
Alphabets-II

Function:
Maps Sentences to Objects

Ali is father of Babar

father(babar) = ali
father_of(baber) = ali

• Interpretation has to be very clear.
• If you write father(baber), the answer should be ali
• For the above functions the *arity is 1*

(number of arguments to the function)
Alphabets-II

Functions:
1) shahid likes zahid \(\text{likes}(\text{shahid}) = \text{zahid} \)
2) atif likes abid \(\text{likes}(\text{atif}) = \text{abid} \)
3) Constants to Variables \(\text{likes}(X) = Y \)

\(\{X, Y\} \) have two possible BINDINGS

\(\{X, Y\} \) could be \{shahid, zahid\}
Or
\(\{X, Y\} \) could be \{atif, abid\}

Substitutions:
For 1 to be true:
\(\{\text{shahid}/X, \text{zahid}/Y\} \)

For 2 to be true:
\(\{\text{atif}/X, \text{abid}/Y\} \)
Alphabets-II

Predicate

Maps Sentences to Truth Values (True/False)

1) Shahid is student \text{student}(shahid)
2) Sana is a girl \text{girl}(sana)
3) Father of baber is elder than Hamza
 \text{elder}([\text{father}(\text{babar}), \text{hamza}])

\textbf{For 1 and 2 arity is 1 and for 3 the arity is 2}
Alphabets-II

Predicate

1) Shahid is a good student
 student(shahid,good) or good_student(shahid)

2) Sana is a friend of Saima, Sana and Saima both are girls
 friend_of(sana,saima) ^ girl(sana) ^ girl(saima)

3) Bill helps Fred
 helps(bill,fred)
Atomic sentences

Atomic sentence = \textit{predicate} \ (\textit{term}_1,\ldots,\textit{term}_n) \\
or \textit{term}_1 = \textit{term}_2

\text{term} = \textit{function} \ (\textit{term}_1,\ldots,\textit{term}_n) \\
or \textit{constant} \\
or \textit{variable}

- \textit{brother}(john,richard)
- \textit{greater}(length(leftsideOf(squareA)), length(leftsideOf(squareB)))
- \textit{>(length(leftsideOf(squareA)), length(leftsideOf(squareB)))}

\textit{Functions cannot be atomic sentences}
Alphabets-III

Connectives:
- \wedge and
- \lor or
- \neg not
- \rightarrow Implication

Quantification
- All persons can see
- There is a person who cannot see

Universal quantifiers \forall (ALL)
Existential quantifiers \exists (There exists)
Complex sentences

- Complex sentences are made from atomic sentences using connectives
 \[-S, \quad S_1 \land S_2, \quad S_1 \lor S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2,\]

\[
\text{sibling(ali,hamza)} \Rightarrow \text{sibling(hamza,ali)}
\]

\[
> (1,2) \lor \leq (1,2) \quad (1 \text{ is greater than } 2 \text{ or less than equal to } 2)
\]

\[
> (1,2) \land \neg > (1,2) \quad (1 \text{ is greater than } 2 \text{ and is not greater than equal to } 2)
\]
Examples

My house is a blue, two-story, with red shutters, and is a corner house

\text{blue(my-house)} \land \text{two-story(my-house)} \land \text{red-shutters(my-house)} \land \text{corner(my-house)}

Ali bought a scooter or a car

\text{bought(ali, car)} \lor \text{bought(ali, scooter)}

IF fuel, air and spark are present the fuel will combust

\text{present(spark)} \land \text{present(fuel)} \land \text{present(air)} \rightarrow \text{combustion(fuel)}
Universal quantification

- $\forall \langle \text{variables} \rangle \langle \text{sentence} \rangle$
 Everyone at LUMS is smart:
 $\forall X \ \text{at}(X, \text{lums}) \Rightarrow \text{smart}(X)$

- $\forall X \ P$ is true in a model m iff P is true with X being each possible object in the model

- Roughly speaking, equivalent to the conjunction of instantiations of P

 $\text{at}(\text{rabia}, \text{lums}) \Rightarrow \text{smart(rabia)}$
 $\land \text{at}(\text{shahid}, \text{lums}) \Rightarrow \text{smart(shahid)}$
 $\land \text{at}(\text{lums}, \text{lums}) \Rightarrow \text{smart(lums)}$
 $\land \ldots$
Examples

All people need air

\[\forall X[\text{person}(X) \implies \text{need_AIR}(X)] \]

The owner of the car also owns the boat

[\text{owner}(X, \text{car}) \land \text{car}(X, \text{boat})]

Formulate the following expression in the PC:

“Ali is a computer science student but not a pilot or a football player”

\[\text{cs_STUDENT}(\text{ali}) \land (\neg \text{pilot}(\text{ali}) \lor \neg \text{ft_PLAYER}(\text{ali})) \]
Examples

Restate the sentence in the following way:
1. Ali is a computer science (CS) student
2. Ali is not a pilot
3. Ali is not a football player

\[
\text{cs_student(ali)} \land \neg \text{pilot(ali)} \land \neg \text{football_player(ali)}
\]
Examples

Studying fuzzy systems is exciting and applying logic is great fun if you are not going to spend all of your time slaving over the terminal

\(\forall X(\neg \text{slave_terminal}(X) \rightarrow [fs_eciting(X)^\land \text{logic_fun}(X)]) \)

Every voter either favors the amendment or despises it

\(\forall X[\text{voter}(X) \rightarrow [\text{favor}(X, \text{amendment}) \lor \neg \text{favor}(X, \text{amendment}) \land \neg \text{despise}(X, \text{amendment})] \)

(this part simply endorses the statement, may not be required)
Undecidable Predicate

• For which exhaustive testing is required
• Example:
 $\forall X \text{ likes}(zahra, X)$
• This sentence is computationally impossible to calculate
• Scope of problem domain is to be limited to remove this problem,
 – i.e., X is a variable representing final year female student in the AI class, compared to an X representing all the people in the city of Lahore
Robotic Arm Example

• Represent the initial details of the system
• Generate sentences of descriptive and or implicative nature
• Modify the facts using new sentences
Example: Robotic Arm

- Represent the initial details of the systems

```
on(a,b)
on(c,d)
ontable(b)
ontable(d)
clear(a)
clear(c)
hand_empty
```
FOL

Goal:
To pick a block and place it over another block

Define predicate: \(\text{stack}_\text{on}(X,Y) \)

General sentence:
hand_empty \(^ \) clear (X) \(^ \) clear (Y) \(^ \) pick (X) \(^ \) put_on (X,Y) \(\Rightarrow \) stack_on (X,Y)

Conditions --- **Conclusions**

What could the conditions be?

- hand_empty
- clear (X)
- clear (Y)
- pick (X)
- put_on (X,Y)
Goal:
To pick a block and place it over another block

\[
\text{hand_empty} \land \text{clear}(X) \land \text{clear}(Y) \land \text{pick}(X) \land \text{put_on}(X,Y) \rightarrow \text{stack_on}(X,Y)
\]

Semantically more correct:

\[
\text{hand_empty} \land \text{clear}(X) \rightarrow \text{pick}(X)
\]
\[
\text{clear}(Y) \land \text{pick}(X) \rightarrow \text{put_on}(X,Y)
\]
\[
\text{put_on}(X,Y) \rightarrow \text{stack_on}(X,Y)
\]

hand_empty could be written as empty(hand), if hand_empty is in the knowledge base, then hand is empty otherwise false.

put_on(X,Y) → stack_on(X,Y) is in fact equivalence
Example: Robotic Arm

- Modify details of the systems

```
on(b,a)
on(c,d)
tonable(b)
tonable(d)
clear(a)
clear(c)
hand_empty
```

```
on(b,a)
on(c,d)
on(e,a)
tonable(b)
tonable(d)
clear(c)
clear(e)
hand_empty
```
Models for FOL: Example
A common mistake to avoid

- **Represent:** Everyone at LUMS is smart

\[\forall X \ (\text{at}(X, \text{lums}) \land \text{smart}(X)) \]

\[\forall X \ (\text{at}(X, \text{lums}) \Rightarrow \text{smart}(X)) \]

- **Common mistake:**

 using \(\land \) as the main connective with \(\forall \): means

 “Everyone is at LUMS and everyone is smart”
 “Everyone at LUMS is smart”

- **Typically,**

 \(\Rightarrow \) is the main connective with \(\forall \)
Existential quantification

• $\exists<\text{variables}> <\text{sentence}>$

• Someone at LUMS is smart:
 • $\exists X \text{ at}(X,\text{lums}) \land \text{smart}(X)$

• $\exists X \ P$ is true in a model m iff P is true with X being some possible object in the model

• Roughly speaking, equivalent to the disjunction of instantiations of P

 $\text{at}(\text{sana},\text{lums}) \land \text{smart}(\text{sana})$
 $\lor \text{at}(\text{bashir},\text{lums}) \land \text{smart}(\text{bashir})$
 $\lor \text{at}(\text{lums},\text{lums}) \land \text{smart}(\text{lums})$
 $\lor \ldots$
Another common mistake to avoid

- Typically, \(\land \) is the main connective with \(\exists \)

- **Common mistake**: using \(\Rightarrow \) as the main connective with \(\exists \):

 \[\exists X \; \text{at}(X, \text{lums}) \Rightarrow \text{smart}(X) \]

 is true if there is anyone who is not at LUMS!

- **Even if the antecedent is false the sentence can still be true** (see the truth table of implication).
Properties of quantifiers

- $\forall X \forall Y$ is the same as $\forall Y \forall X$
- $\exists X \exists Y$ is the same as $\exists Y \exists X$
- $\exists X \forall Y$ is not the same as $\forall Y \exists X$
- $\exists X \forall Y$ loves(X,Y)
 "There is a person who loves everyone in the world"
- $\forall Y \exists X$ Loves(X,Y)
 "Everyone in the world is loved by at least one person"

- **Quantifier duality**: each can be expressed using the other
 - $\forall X$ likes(X,car) $\rightarrow \neg \exists X \neg$ likes(X,car)
 - $\exists X$ likes(X,bread) $\rightarrow \neg \forall X \neg$ likes(X,bread)
Equality

- \(\text{term}_1 = \text{term}_2 \) is true under a given interpretation if and only if \(\text{term}_1 \) and \(\text{term}_2 \) refer to the same object

- **Sibling** in terms of **Parent**:
 \[
 \forall X,Y \ \text{sibling}(X,Y) \leftrightarrow \\
 [\neg(X = Y) \land \exists M,F \neg(M = F) \land \\
 \text{parent}(M,X) \land \text{parent}(F,X) \land \\
 \text{parent}(M,Y) \land \text{parent}(F,Y)]
 \]
Using FOL

The kinship domain:

- Brothers are siblings
 \[\forall X, Y \; \text{brother}(X, Y) \iff \text{sibling}(X, Y) \]
- One's mother is one's female parent
 \[\forall M, C \; \text{mother}(C) = M \iff (\text{female}(M) \land \text{parent}(M, C)) \]
- “Sibling” is symmetric
 \[\forall X, Y \; \text{sibling}(X, Y) \iff \text{sibling}(Y, X) \]
Rules: Wumpus world

- **Perception**
 - $\forall T, S, B \text{ percept}([S, B, \text{glitter}], T) \Rightarrow \text{glitter}(T)$

- **Reflex**
 - $\forall T \text{ glitter}(T) \Rightarrow \text{bestAction}($grab$, T)$
Deducing Squares/Properties

What are Adjacent Squares

\[\forall X,Y,A,B \text{ adjacent}([X,Y],[A,B]) \iff [A,B] \in \{[X+1,Y], [X-1,Y],[X,Y+1],[X,Y-1]\} \]

Properties of squares:

\[\forall S,T \text{ at}(\text{agent},S,T) \land \text{breeze}(T) \Rightarrow \text{breezy}(S) \]

Squares are breezy near a pit:

Diagnostic rule---infer cause from effect

\[\forall S \text{ breezy}(S) \Rightarrow \text{adjacent}(R,S) \land \text{pit}(R) \]

Causal rule---infer effect from cause

\[\forall R \text{ pit}(R) \Rightarrow [\forall S \text{ adjacent}(R,S) \Rightarrow \text{breezy}(S)] \]
Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
The electronic circuits domain

One-bit full adder

![One-bit full adder diagram]
The electronic circuits domain

1. Identify the task
 - Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
 - Alternatives:
 type(x₁) = xor
 type(x₁, xor)
 xor(x₁)
4. Encode general knowledge of the domain

- \(\forall T_1, T_2 \text{ connected}(T_1, T_2) \Rightarrow \text{signal}(T_1) = \text{signal}(T_2) \)
- \(\forall T \text{ signal}(T) = 1 \lor \text{signal}(T) = 0 \)
- \(1 \neq 0 \)
- \(\forall T_1, T_2 \text{ connected}(T_1, T_2) \Rightarrow \text{connected}(T_2, T_1) \)
- \(\forall G \text{ type}(G) = \text{OR} \Rightarrow \text{signal}(\text{out}(1,G)) = 1 \iff \exists N \text{ signal}(\text{in}(N,G)) = 1 \)
- \(\forall G \text{ type}(G) = \text{AND} \Rightarrow \text{signal}(\text{out}(1,G)) = 0 \iff \exists N \text{ signal}(\text{in}(N,G)) = 0 \)
- \(\forall G \text{ type}(G) = \text{XOR} \Rightarrow \text{signal}(\text{out}(1,G)) = 1 \iff \text{signal}(\text{in}(1,G)) \neq \text{signal}(\text{in}(2,G)) \)
- \(\forall G \text{ type}(G) = \text{NOT} \Rightarrow \text{signal}(\text{out}(1,G)) \neq \text{signal}(\text{in}(1,G)) \)
The electronic circuits domain

5. Encode the specific problem instance

\[
\begin{align*}
\text{type}(x_1) &= \text{xor} & \text{type}(x_2) &= \text{xor} \\
\text{type}(a_1) &= \text{and} & \text{type}(a_2) &= \text{and} \\
\text{type}(o_1) &= \text{or}
\end{align*}
\]

\[
\begin{align*}
\text{connected}(\text{out}(1,x_1),\text{in}(1,x_2)) & & \text{connected}(\text{in}(1,c_1),\text{in}(1,x_1)) \\
\text{connected}(\text{out}(1,x_1),\text{in}(2,a_2)) & & \text{connected}(\text{in}(1,c_1),\text{in}(1,a_1)) \\
\text{connected}(\text{out}(1,o_2),\text{in}(1,o_1)) & & \text{connected}(\text{in}(2,c_1),\text{in}(2,x_1)) \\
\text{connected}(\text{out}(1,a_1),\text{in}(2,o_1)) & & \text{connected}(\text{in}(2,c_1),\text{in}(2,a_1)) \\
\text{connected}(\text{out}(1,x_2),\text{out}(1,c_1)) & & \text{connected}(\text{in}(3,c_1),\text{in}(2,x_2)) \\
\text{connected}(\text{out}(1,o_1),\text{out}(2,c_1)) & & \text{connected}(\text{in}(3,c_1),\text{in}(1,a_2))
\end{align*}
\]
The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the adder circuit?

\[\exists I_1, I_2, I_3, O_1, O_2 \quad \text{signal}(\text{in}(1,c_1)) = I_1 \land \text{signal}(\text{in}(2,c_1)) = I_2 \land \text{signal}(\text{in}(3,c_1)) = I_3 \land \text{signal}(\text{out}(1,c_1)) = O_1 \land \text{signal}(\text{out}(2,o_1)) = O_2 \]

7. Debug the knowledge base

May have omitted assertions like \(1 \neq 0 \)
Summary

• First-order logic:
 – objects and relations are semantic primitives
 – syntax: constants, functions, predicates, equality, quantifiers

• Increased expressive power: sufficient to define wumpus world
Operations

- **Unification**: Algorithm for determining the substitutions needed to make two predicate calculus expressions match
- **Skolemization**: A method of removing or replacing existential quantifiers
- **Composition**: If S and S' are two substitutions sets, then the composition of S and S' (SS') is obtained by applying the elements of S to the elements of S' and finally adding the results